Chapters 4 & 5

AM Modulation 3/25/15

Outline

- Complex Envelope Representation of Bandpass Waveforms,
- Representation of Modulated Signals,
- Spectrum of Bandpass Signals,
- Evaluation of Power,
- Bandpass Filtering and Linear Distortion,
- Bandpass Sampling Theorem,
- Received Signal Plus Noise,
- Classification of Filters and Amplifiers,
- Nonlinear Distortion, Limiters, Mixers, Up Converters, and Down Converters,
- Frequency Multipliers, Detector Circuits, Phase-Locked Loops and Frequency Synthesizers, Transmitters and Receivers,
- Software Radios?

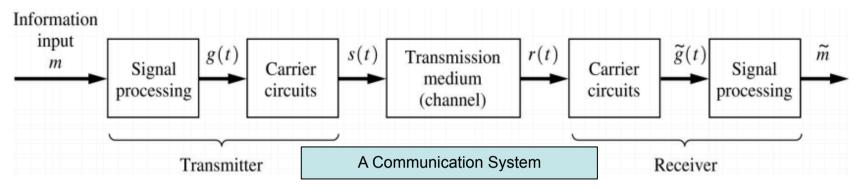
Baseband & Bandpass Waveforms

- <u>A baseband waveform</u> has a spectral magnitude that is nonzero for freq in the vicinity of the origin (f=0) and negligible elsewhere.
 - It is a signal whose range of freq is measured from zero to a maximum bandwidth
 - -E.g., an audio signal from a microphone, a TTL signal from a digital circuit.
- <u>A bandpass waveform</u> has a spectral magnitude that is nonzero for freq in some band concentrated about a freq f = ±f_c.
 - The spectral magnitude is negligible elsewhere.
 - $-f_c$ is called <u>carrier freq.</u>
 - E.g., An AM radio signal that broadcast news over f_c=850 kHz is a bandpass signal

Why Modulation?

- In order to transfer signals we need to transfer the frequency to higher level
- One approach is using modulation
- Modulation:
 - Changing the amplitude of the carrier
- AM modulation is one type of modulation
 - Easy, cheap, low-quality
 - Used for AM receiver and CBs (citizen bands)
 - Generally high carrier frequency is used to modulate the voice signal (300 – 3000 Hz)

Baseband & Bandpass Waveforms, Modulation



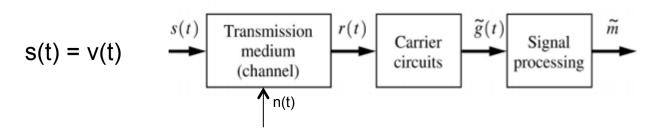
- <u>Modulation</u> is the process of imparting the source information onto a bandpass signal with carrier freq f_c using amplitude or phase perturbation (or both).
 - The bandpass signal is called modulated signal s(t).
 - The baseband signal is called modulating signal m(t).
- <u>Bandpass communication signal</u> is obtained by modulating a baseband analog or digital signal on a carrier.
 - Whereas baseband signal cannot go far, a bandpass signal goes a long distance.

Complex Envelope Representation

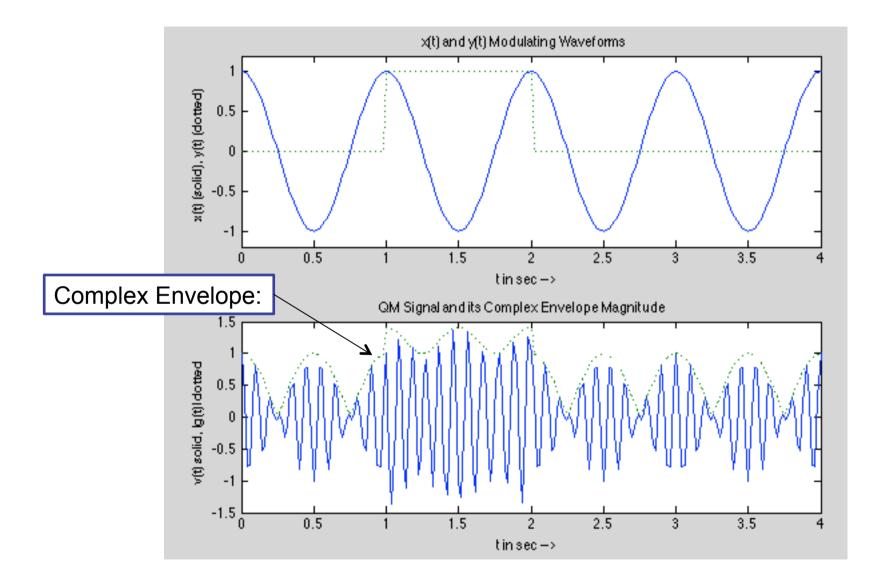
• A physical bandpass waveform can be represented by $v(t) = \operatorname{Re}\left\{g(t)e^{jw_{c}t}\right\}$ - where g(t) is called the complex envelope of v(t), $\omega_{c}=2\pi f_{c}$.

$$g(t) = x(t) + jy(t) = |g(t)| e^{j \leq g(t)} = R(t)e^{j\theta(t)}$$

- e^{jw_ct} factor shifts (translates) the spectrum of the <u>baseband</u> <u>g(t)</u> signal from <u>baseband</u> up to carrier freq <u>f_c</u>.
- -R(t) is said to be <u>amplitude modulation</u> (AM) on v(t).
- $-\theta(t)$ is said to be phase modulation (PM) on v(t).

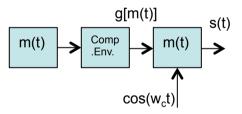


Modulating & Modulated Signals



Representation of Modulated Signal

- Modulation is the process of encoding the source information m(t) into a bandpass signal s(t).
- the modulated signal is an application of bandpass representation, i.e., $s(t) = \text{Re} \{g(t)e^{jw_c t}\}$
- The complex envelope g(t) is a function of the modulating signal m(t),
 i.e., g(t) = g[m(t)]
 - -E.g., for AM modulation, $g[m(t)] = A_c[1 + m(t)]$



Let's find FT, PSD, and $P_{v_{norm}}$ of v(t)!

Spectrum of Bandpass Signal

<u>Theorem</u>: If the bandpass waveform is represented by $v(t) = \operatorname{Re}\left\{g(t)e^{jw_{c}t}\right\}$ then the spectrum of the bandpass waveform is

$$V(f) = \frac{1}{2}[G(f - f_c) + G^*(-f - f_c)], \& PSD = P_v(f) = \frac{1}{4}[P_g(f - f_c) + P_g(-f - f_c)]$$

Proof for V(f):

$$v(t) = \operatorname{Re}\left\{g(t)e^{jw_{c}t}\right\} = \frac{1}{2}g(t)e^{jw_{c}t} + \frac{1}{2}g^{*}(t)e^{-jw_{c}t}, \&$$

$$V(f) = F[v(t)] = \frac{1}{2}F[g(t)e^{jw_{c}t}] + \frac{1}{2}F[g^{*}(t)e^{-jw_{c}t}] = \frac{1}{2}[G(f - f_{c}) + G^{*}(-f - f_{c})]$$

where we used the fact that $F[g^{*}(t)] = G^{*}(-f)$

$$s(t) = v(t)$$
 Note: Re{a+jb}=(a+jb)/2 + (a-jb)/2 = a

Power Evaluation

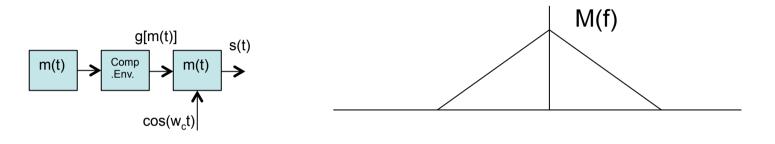
The total average normalized power of bandpass waveform v(t) is

$$P_v = \langle v^2(t) \rangle = \int_{-\infty}^{\infty} \mathcal{P}_v(f) \, df = R_v(0) = \frac{1}{2} \langle |g(t)|^2 \rangle$$

Let's look at an example!

Example: Spectrum of Amplitude Modulated Signal

- Assume the complex envelop $g[m(t)] = A_o[1+m(t)]$
- Thus, $s(t) = A_o[1+m(t)]cos(w_ct)$



- Find the mathematical expression for S(f) and |S(f)| for all f using the given M(f):
 - Find S(f)
 - Find |S(f)|
 - Normalized power $P_s = P_v$

Example: Spectrum of Amplitude Modulated Signal

AM Modulation

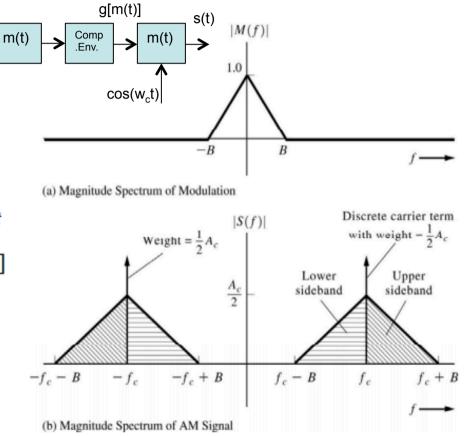
Evaluate the magnitude spectrum for an AM signal with the complex envelope $g[m(t)]=A_c[1+m(t)]$.

Solution: The spectrum of complex envelope is $G(f) = A_c \delta(f) + A_c M(f)$

 $s(t) = \operatorname{Re}\left\{g(t)e^{jw_{c}t}\right\} = A_{c}[1+m(t)]\cos\omega_{c}t$ $S(f) = \frac{A_{c}}{2}[\delta(f-f_{c})+M(f-f_{c})+\delta(f+f_{c})+M(f+f_{c})]$

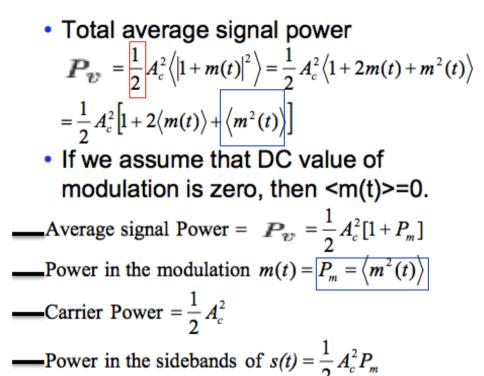
where because m(t) is real, $M^*(f)=M(-f) \& \delta(f)=\delta(-f)$ is even.

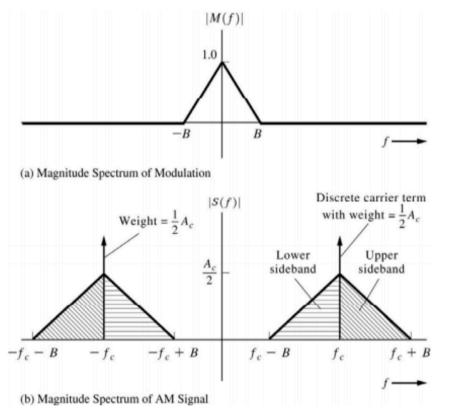
$$|S(f)| = \begin{cases} \frac{A_{c}}{2} \delta(f - f_{c}) + \frac{A_{c}}{2} |M(f - f_{c})|, f > 0\\ \frac{A_{c}}{2} \delta(f + f_{c}) + \frac{A_{c}}{2} |M(-f - f_{c})|, f < 0 \end{cases}$$



 The 1 in g(t) = A_c [1+m(t)] causes extra delta functions to occur in spectrum at f= ± f_c.

Example: Spectrum of Amplitude Modulated Signal

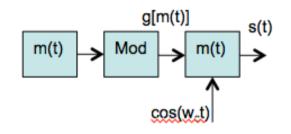




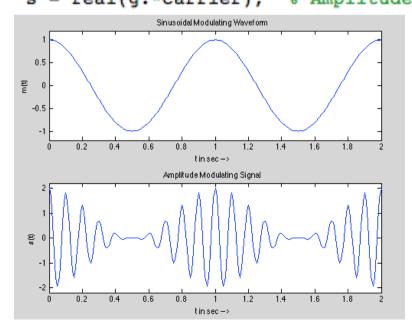
1) Note that $s(t) = \operatorname{Re}\left\{g(t)e^{jw_{c}t}\right\} = A_{c}[1+m(t)]\cos\omega_{c}t$ 2) $\langle v(t)^{2} \rangle$ for periodic sinusoidal functions results in half power 3) m = $\langle m(t)^{2} \rangle$

Amplitude Modulation

Evaluate the magnitude spectrum for an AM signal with the complex envelope $g[m(t)]=A_c[1+m(t)]$.



m = cos(wa*t); % Sinusoidal Modulating Waveform
m = m(:);
j = sqrt(-1);
g = 1 + m;
carrier = exp(j*wc*t);
g = g(:);
carrier = carrier(:);
s = real(g.*carrier); % Amplitude Modulating Signal



Assume: $m(t) = cos(w_a t)$ g[m(t)]=g(t)=1+m(t) $s(t) = Re{g(t).e^{jw_ct}}$ $= g(t).cos(w_ct)$ $= [1+m(t)].cos(w_ct)$

More About AM Modulation

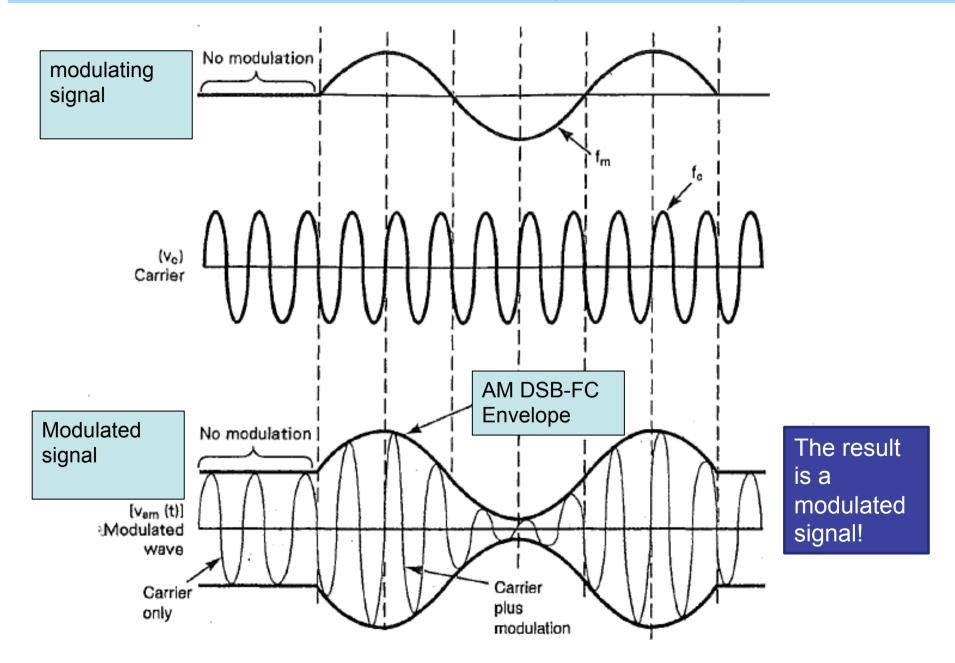
- In AM modulation the carrier signal changes (almost) linearly according to the modulating signal - m(t)
- AM modulating has different schemes
 - Double-sideband Full Carrier (DSB-FC)
 - Also called the Ordinary AM Modulation (AM)
 - Double-sideband suppressed carrier (DSB-SC)
 - Single-sideband (SSB)
 - Vestigial Sideband (VSB) Not covered here!

More About AM Modulation

- In AM modulation the carrier signal changes (almost) linearly according to the modulating signal - m(t)
- AM modulating has different schemes
 - Double-sideband Full Carrier (DSB-FC)
 - Also called the Ordinary AM Modulation (AM)
 - Double-sideband suppressed carrier (DSB-SC)
 - Single-sideband (SSB)
 - Vestigial Sideband (VSB) Not covered here!

We generally assume the Modulating Signal is Sinusoidal Let's focus on the simplest case!

AM Modulation (DSB-FC)



Review: Bandpass Signal

• Remember for bandpass waveform we have

 $s(t) = \operatorname{Re}\{g(t)_{e}^{j\omega_{c}t}\}$

• The voltage (or current) spectrum of the bandpass signal is

$$S(f) = \frac{1}{2}[G(f - f_c) + G^*(-f - f_c)]$$

• The PSD will be

$$\mathcal{P}_{s}(f) = \frac{1}{4} \left[\mathcal{P}_{g}(f - f_{c}) + \mathcal{P}_{g}(-f - f_{c}) \right]$$

• In case of Ordinary AM (DSB – FC) modulation:

 $g(t) = A_c[1 + m(t)]$

- In this case Ac is the power level of the carrier signal with no modulation;
- Therefore: $s(t) = A_c[1 + m(t)] \cos \omega_c t$

Make sure you know where these come from!

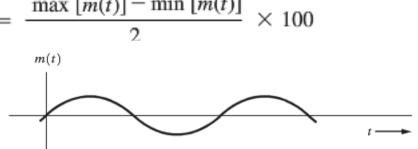
AM: Modulation Index

• Modulation Percentage (m)

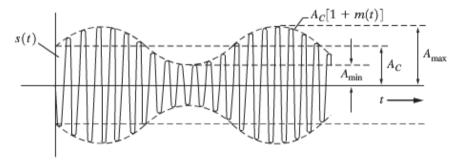
$$\% \text{ modulation} = \frac{A_{\text{max}} - A_{\text{min}}}{2A_c} \times 100 = \frac{\max[m(t)] - \min[m(t)]}{2} \times 10$$

- Note that m(t) has peak amplitude of A_m = mE_m=mA_c
- We note that for ordinary AM modulation,
 - if the modulation percentage
 %100, implying m(t) < -1,
 - Therefore \rightarrow

$$s(t) = \begin{cases} A_c[1+m(t)] \cos w_c t, & \text{if } m(t) \ge -1 \\ 0, & \text{if } m(t) < -1 \end{cases}$$



(a) Sinusoidal Modulating Wave

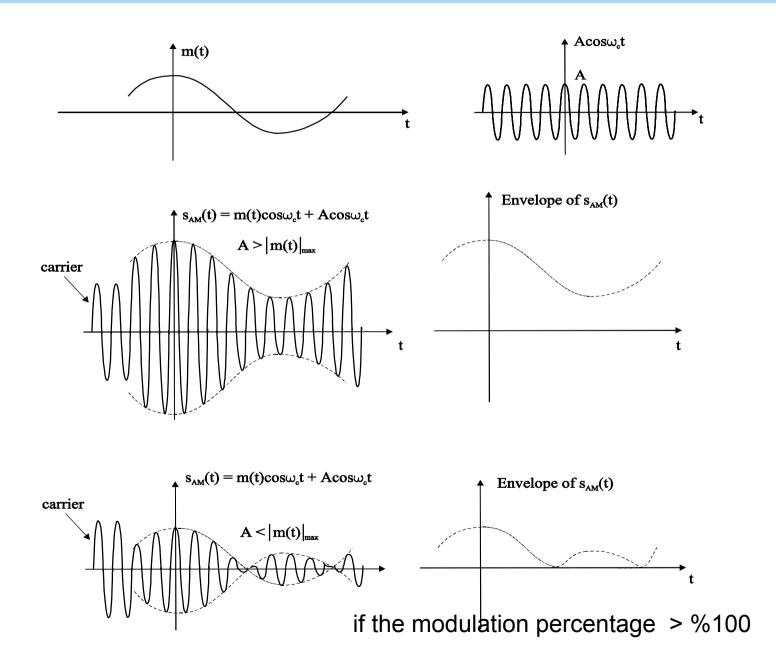


(b) Resulting AM Signal

 $A_{max} - A_{min}$

m = $A_{max} + A_{min}$

AM: Modulation Index



AM: MATLAB Model

• This is how we generate the ordinary AM using MATLAB

```
fc = 10;
               % carrier frequency
                % modulating frequency
fa = 1;
N = 200; % number of samples
To = 4; % observation time: To x periods
              % Modulation Index (0.0-2.0 or 0 to 200 percent)
MI = 1;
                 % Ec is the level of the AM envelope in the
Ec = 1;
                    absence of modulation, when m(t) = 0; 
Ta = 1/fa;
dt = To*Ta/N;
wc = 2*pi*fc;
wa = 2*pi*fa;
t = 0:dt:To*Ta; % simulation time
m = MI*cos(wa*t); % modulating signal: m(t)
m = m(:);
y = zeros(length(t),1); % In this part we force [1+m] = 0 if
for (i = 1:1:length(t)) %
  if (m(i) > -1) % in other words, we ensure [1+m(t)]=0 if
    y(i) = 1; % m(t) < -1
  end;
end;
```

AM: Normalized Average Power

- Normalized Average Power
- Note that

$$\langle s^2(t) \rangle = \underbrace{\frac{1}{2} A_c^2}_{\text{discrete}} + \underbrace{\frac{1}{2} A_c^2 \langle m^2(t) \rangle}_{\text{sideband power}}$$

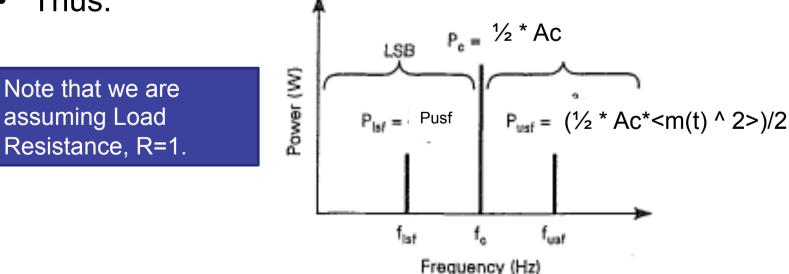
$$s^{2}(t)\rangle = \frac{1}{2} \langle |g(t)|^{2} \rangle = \frac{1}{2} A_{c}^{2} \langle [1 + m(t)]^{2} \rangle$$

$$= \frac{1}{2} A_{c}^{2} \langle 1 + 2m(t) + m^{2}(t) \rangle$$

$$= \frac{1}{2} A_{c}^{2} + A_{c}^{2} \langle m(t) \rangle + \frac{1}{2} A_{c}^{2} \langle m^{2}(t) \rangle$$

carrier power (Total) \rightarrow each sideband will have half the power!

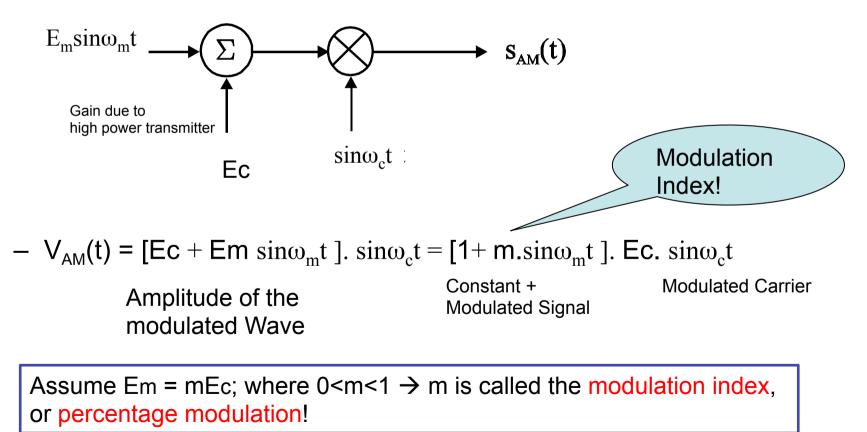
- Pc is the normalized carrier power(1/2)Ac^2
- The rest is the power of each side band (lower sideband or LSB & USB)
- Thus:



A Practical Example:

Ordinary AM Mathematical Expression

- In this case:
 - $Vc(t) = Ec \sin \omega_c t$; Carrier signal
 - $Vm(t) = Em \sin \omega_m t$; Modulating signal
 - $V_{AM}(t) = S_{AM}(t) = Ec \sin \omega_c t + Em \sin \omega_m t \cdot \sin \omega_c t$; AM modulated signal



AM Modulation and Modulation Index

• Rearranging the relationship:

 $v_{am}(t) = E_c \sin(2\pi f_c t) + [mE_c \sin(2\pi f_m t)][\sin(2\pi f_c t)]$

$$v_{am}(t) = E_c \sin(2\pi f_c t) - \frac{mE_c}{2} \cos[2\pi (f_c + f_m)t] + \frac{mE_c}{2} \cos[2\pi (f_c - f_m)t]$$

• In this case we have:

- | Carrier | + | LSB | + | USB |

• Note that for m=1 (modulation percentage of 100 percent)

$$-V_{am_max} = Ec + mEc = 2Ec$$

$$-V_{am_{min}}=0;$$

AM Modulation and Modulation Index

$$v_{am}(t) = E_c \sin(2\pi f_c t) - \frac{mE_c}{2} \cos[2\pi (f_c + f_m)t] + \frac{mE_c}{2} \cos[2\pi (f_c - f_m)t]]$$

AM Power Distribution

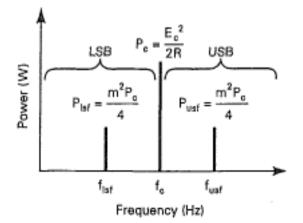
- $P = E^2/2R = Vp^2/2R$; R = load resistance
- Remember: Pavg Vrms²/R ; where Vrms for sinusoidal is Vp/sqrt(2)

$$v_{am}(t) = E_c \sin(2\pi f_c t) - \frac{mE_c}{2} \cos[2\pi (f_c + f_m)t] + \frac{mE_c}{2} \cos[2\pi (f_c - f_m)t]$$

•
$$P_{carrier_average} = Ec^2/2R$$

- $P_{usb_average} = (mEc/2)^2/2R = (m^2/4)Pc$
- P_{total} = P_{carrier_average} + P_{usb_average} + P_{lsb_average}

What happens as m increases?



Current Analysis

- Measuring output voltage may not be very practical, that is measuring Vp in P = Vp²/2R is difficult in across an antenna!
- However, measuring the current passing through an antenna may be more possible: Total Power is $P_T = I_T^2 R$

Total power
$$P_i$$

 $P_c = \frac{I_t^2 R}{I_c^2 R} = \frac{I_t^2}{I_c^2} = 1 + \frac{m^2}{2}$
Carrier power P_c
 $\frac{I_t}{I_c} = \sqrt{1 + \frac{m^2}{2}}$
 $I_t = I_c \sqrt{1 + \frac{m^2}{2}}$

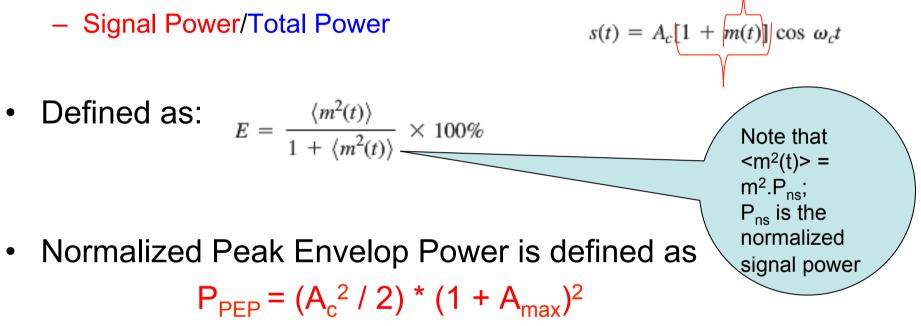
Note that we can obtain m if we measure currents!

Examples (5A, 5C)

General Case: m(t) can be any bandpass

AM: Modulation Efficiency

Defined as the percentage of the total power of the modulated signal that conveys information



(when load resistance R=1)

- We use P_{PEP} to express transmitter output power.
- In general, Normalized Peak Envelop Power, P_{PEP}, can be expressed as follow:

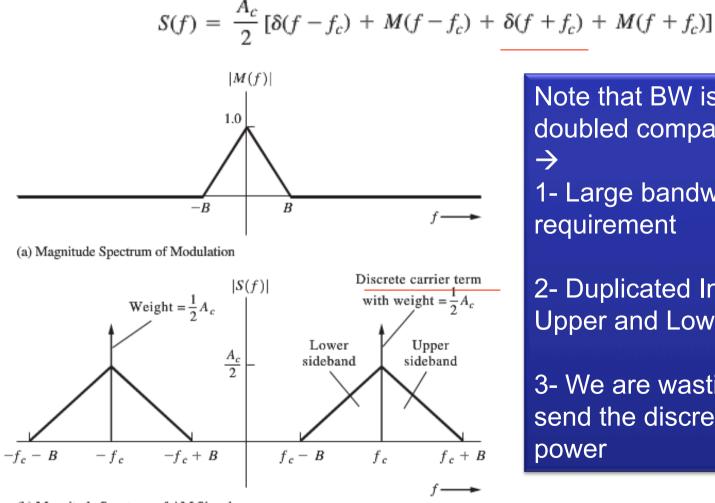
 ¹/₂ max {|g(t)|²}

Example (5B)

- Assume Pc_avg = 5000 W for a radio station (un-modulated carrier signal); If m=1 (100 modulation index) with modulated frequency of 1KHz sinusoid find the following:
 - Peak Voltage across the load (Ac)
 - Total normalized power (<s(t)²>)
 - Total Average (actual) Power
 - Normalized PEP
 - Average PEP
 - Modulation Efficiency Is it good?

AM: Voltage and Current Spectrum Issues

- We know for AM: $s(t) = A_c[1 + m(t)] \cos \omega_c t$
- The voltage or Current Spectrum will be



Note that BW is 2B – doubled compared to M(f) 1- Large bandwidth requirement

2- Duplicated Information in **Upper and Lower Sides**

3- We are wasting power to send the discrete carrier power

(b) Magnitude Spectrum of AM Signal

Building an Ordinary AM Modulator

- Transferring AC power to RF power!
- Two general types ullet
 - Low power modulators
 - High power modulators
- Low Power Modulators ۲
 - Using multipliers and amplifiers
 - Issue: Linear amplifiers must be used; however not so efficient when it comes to high power transfer

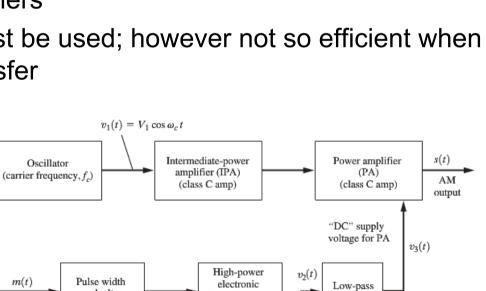
modualtor

(PWM)

Audio

input

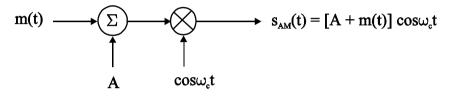
- High Power Modulators ۲
 - Using PWM



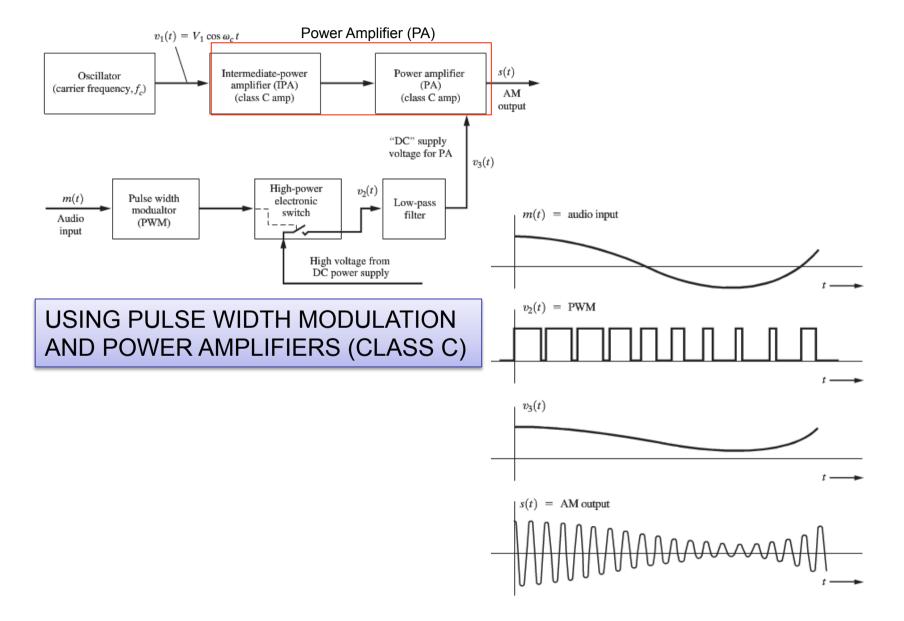
switch

High voltage from DC power supply

filter



Building an Ordinary AM Modulator



Double Sideband Suppressed Carrier

 DSB-SC is useful to ensure the discrete carrier signal is suppressed:

 $s(t) = A_c m(t) \cos \omega_c t$

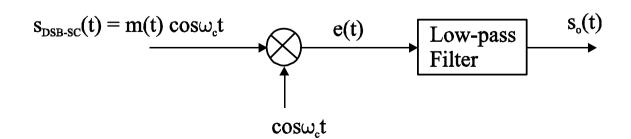
• The voltage or current spectrum of DSB-SC will be

$$S(f) = \frac{A_c}{2} \left[M(f - f_c) + M(f + f_c) \right]$$

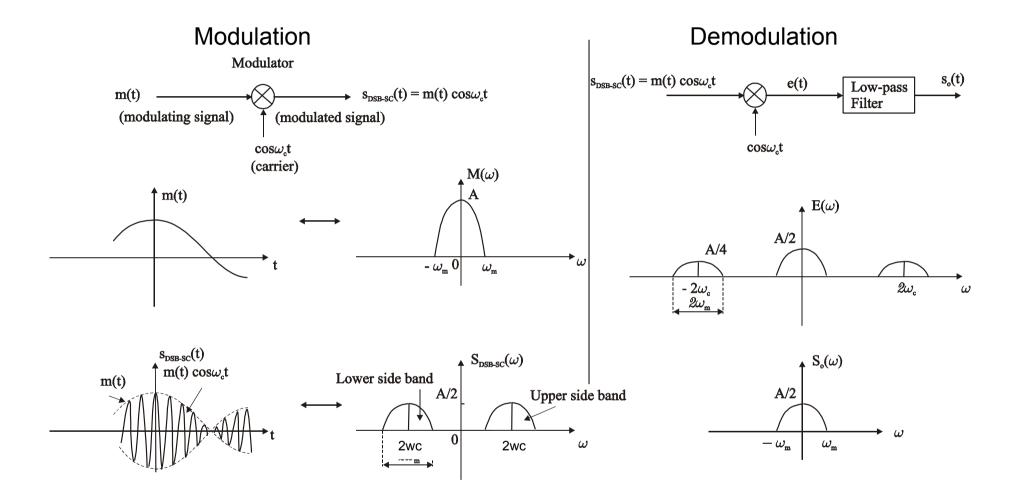
- Therefore no waste of power for discrete carrier component !
- What is the modulation efficiency? \rightarrow 100 Percent!

- Effic = $< m(t)^{2} > / < m(t)^{2} >$

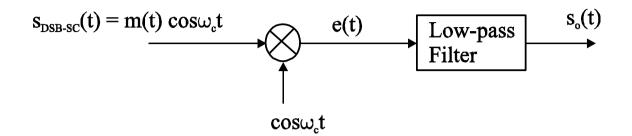
- percentage of the total power of the modulated signal that conveys information
- DSB-SC:



DSB-SC – Modulation & Coherent Demodulation



DSB-SC – Coherent Demodulation



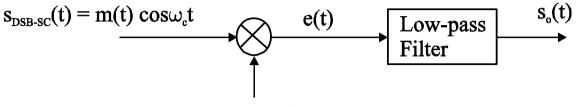
Multiplying the signal m(t)cos $\omega_c t$ by a local carrier wave cos $\omega_c t$ $e(t) = m(t)cos^2\omega_c t = (1/2)[m(t) + m(t)cos 2\omega_c t]$ $E(\omega) = (1/2)M(\omega) + (1/4)[M(\omega + 2\omega_c) + M(\omega - 2\omega_c)]$

Passing through a low pass filter: $S_o(\omega) = (1/2)M(\omega)$ The output signal: $s_o(t) = (1/2)m(t)$

The issue is how to keep the same exact fc on modulator & demodulator! →The coherent demodulator must be synchronized with the modulator both in frequency and phase! BUT...what if it is not?

DSB-SC – Coherent Demodulation Issues

So, what if the Local Oscillator frequency is a bit off with the center frequency ($\Delta \omega$)?



 $\cos \omega_{c} t$

Multiplying the signal m(t) $\cos\omega_c t$ by a local carrier wave $\cos[(\omega_c + \Delta \omega)t]$

- $e(t) = m(t)\cos\omega_{c}t \cdot \cos[(\omega_{c}+\Delta\omega)t]$
 - $= (1/2)[m(t)] . \{ \cos[\omega_c t (\omega_c + \Delta \omega)t] + \cos[\omega_c t + (\omega_c + \Delta \omega)t] \}$
 - = (1/2)[m(t)]. {cos($\Delta\omega t$) + cos ($2\omega_c + \Delta\omega$)t}
 - $= m(t)/2 \cdot \cos(\Delta \omega t) \leftarrow$ The beating factor (being distorted)

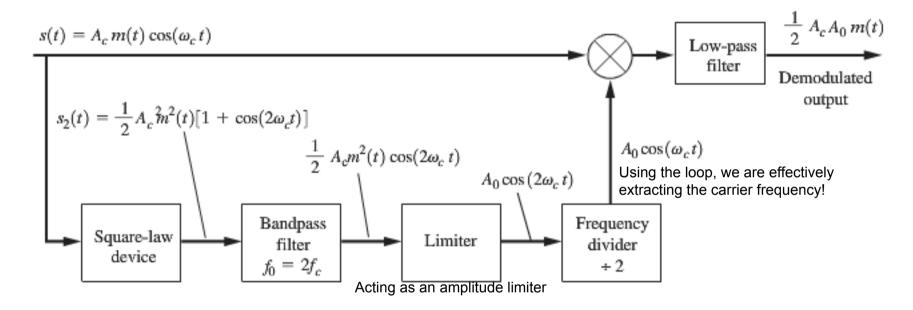
The coherent demodulator must be synchronized with the modulator both in frequency and phase!

Disadvantages:

- 1. It transmits both sidebands which contain <u>identical information</u> and thus waste the channel bandwidth resources;
- 2. It requires a fairly complicated (expensive) circuitry at a remotely located receiver in order to avoid phase errors.

Demodulation DSB-SC

One common approach to eliminate phase error impact is using Squaring Loop:



Note that in this case the initial phase must be known!

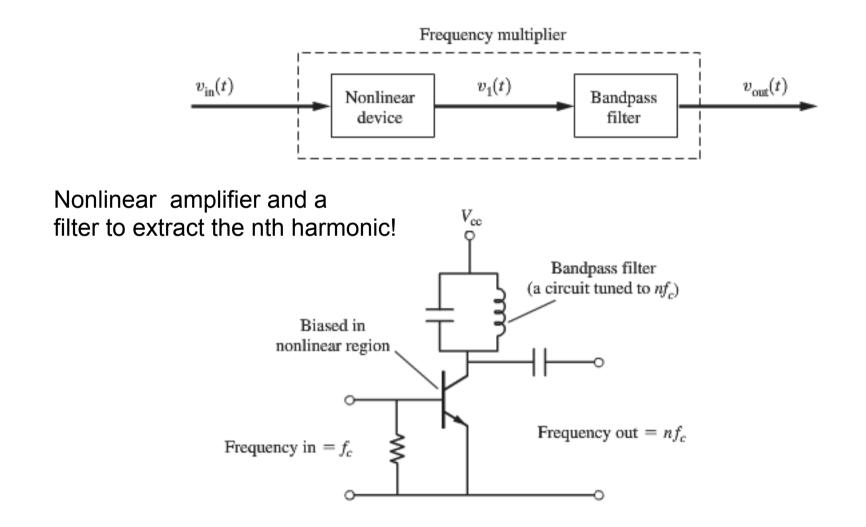
Building AM Modulators

- AM Modulating Circuits are categorized as
 - Low-level Transmitters
 - Medium-level Transmitters
 - High-level Transmitters

Other Key Components

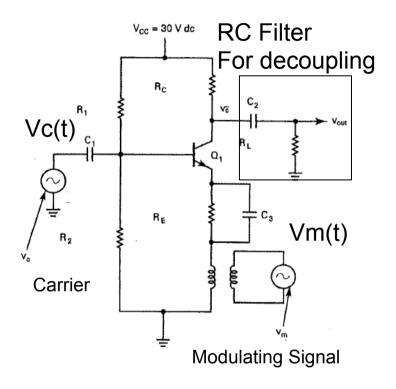
- Mixers & Multipliers
- Phase shifter
 - RC
 - Inverters
- Amplifiers
 - Linear
 - Nonlinear

AM Modulators: Frequency Multiplier



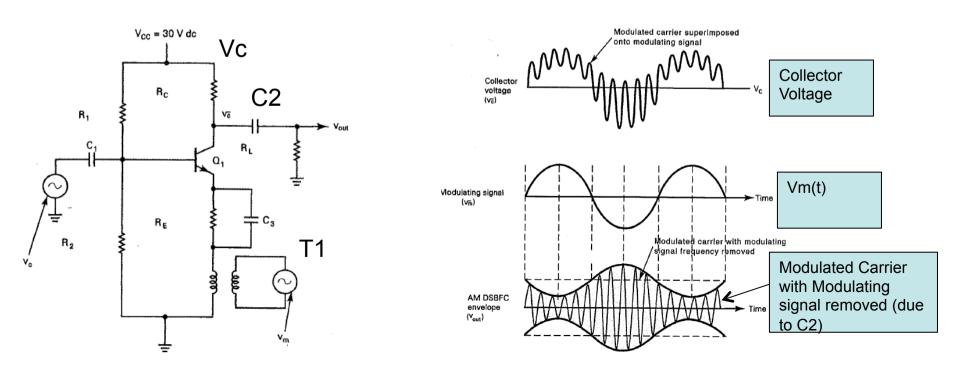
Low-Level AM Modulators

- Mainly for low-power applications
- Requires less modulating signal power to achieve high *m*
- Uses an Emitter Modulator (low power)
 - Incapable of providing high-power
- The amplifier has two inputs: Vc(t) and Vm(t)
- The amplifier operates in both linear and nonlinear modes
 - HOW? See next slide!



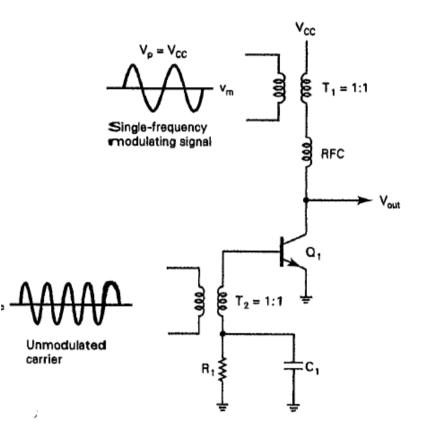
Low-Level AM Modulators – Circuit Operation

- If $Vm(t) = 0 \rightarrow amplifier$ will be in **linear** mode
 - $\rightarrow Aout=V_ccos(w_ct)$; Vc is voltage gain collector voltage (unit less)
- If $Vm(t) > 0 \rightarrow$ amplifier will be in **nonlinear** mode
 - $\rightarrow Aout=[V_c + V_m cos(w_c t)] cos(w_c t)$
- Vm(t) is isolated using T1
 - The value of Vm(t) results in Q1 to go into cutoff or saturation modes
- C2 is used for coupling
 - Removes modulating frequency from AM waveform



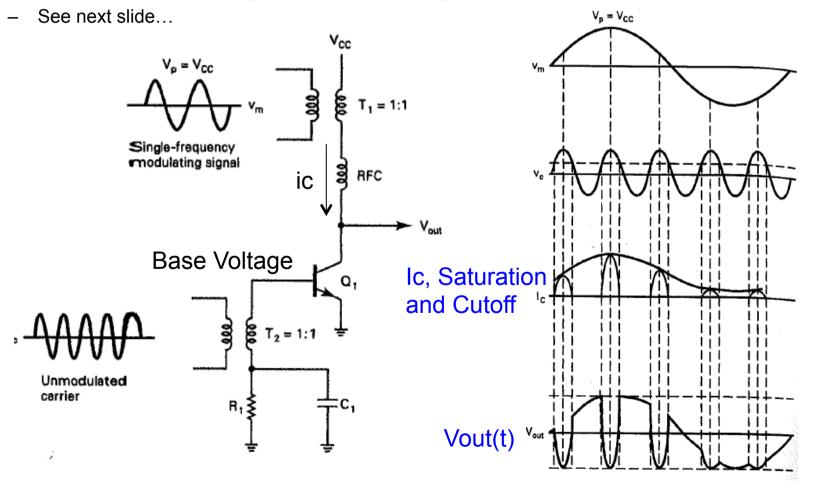
High-Level AM Modulators – Circuit Operation

- Used for high-power transmission
- Uses an Collector Modulator (high power)
 - Nonlinear modulator
- The amplifier has two inputs: *Vc(t)* and *Vm(t)*
- RFC is radio frequency choke
 blocks RF



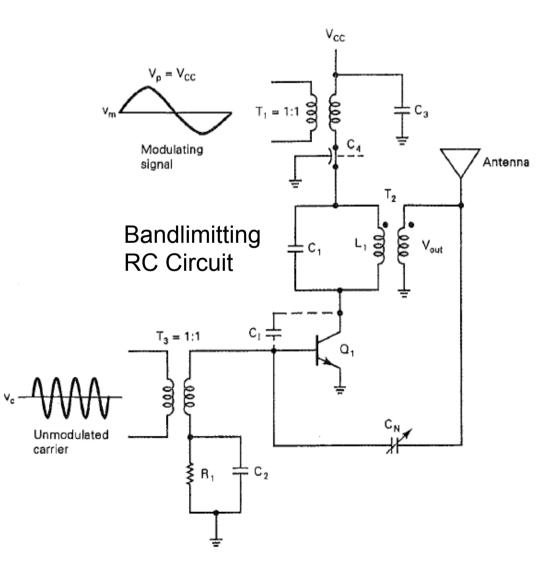
High-Level AM Modulators – Circuit Operation

- General operation:
 - − If Base Voltage > 0.7 \rightarrow Q1 is ON \rightarrow Ic != 0 \rightarrow Saturation
 - − If Base Voltage < 0.7 \rightarrow Q1 is OFF \rightarrow Ic = 0 \rightarrow Cutoff
 - The Transistor changes between Saturation and Cutoff
- When in nonlinear \rightarrow high harmonics are generated \rightarrow Vout must be bandlimited



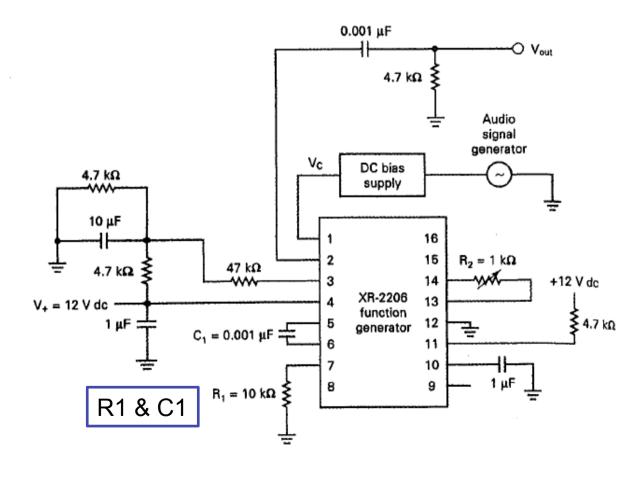
High-Level AM Modulators – Circuit Operation

- C_L and L_L tank can be added to act as Bandlimited
 - Only <u>fc + fm</u> and <u>fc fm</u> can be transmitted



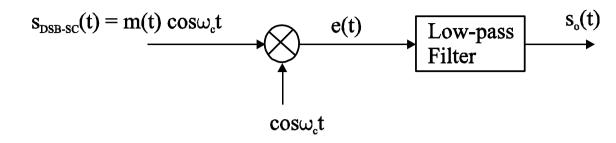
AM Modulators – Using Integrated Devices

- XR-2206 is an integrated circuit function generator
- In this case $fc=1/R_1C_1$ Hz
- Assuming fm = 4kHz; fc = 100kHz we will have the following:



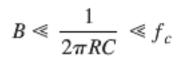
Building AM Demodulators

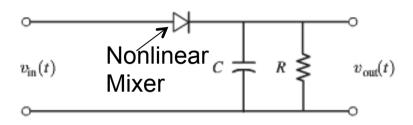
- Coherent
- Non-Coherent
 - Squaring Loop
 - Envelope Detectors



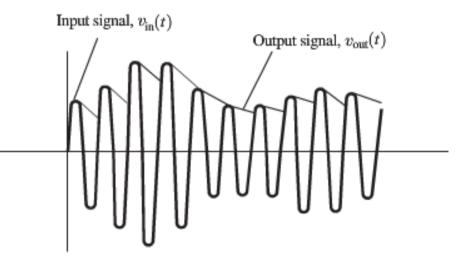
AM Demodulators: Envelope Detector

- It is considered as a **non-coherent** demodulator
- The diode acts as a **nonlinear** mixer
- Other names
 - Diode Detector
 - Peak Detector (Positive)
 - Envelope Detector
- Basic operation: Assume fc = 300 KHz and fm = 2KHz
 - Then there will be frequencies 298, 300, 302 KHz
 - The detector will detect many different frequencies (due to nonlinearity)
 - AM frequencies + AM harmonics + SUM of AM frequencies + DIFF of AM frequencies
 - The RC LPF is set to pass only DIFF frequencies



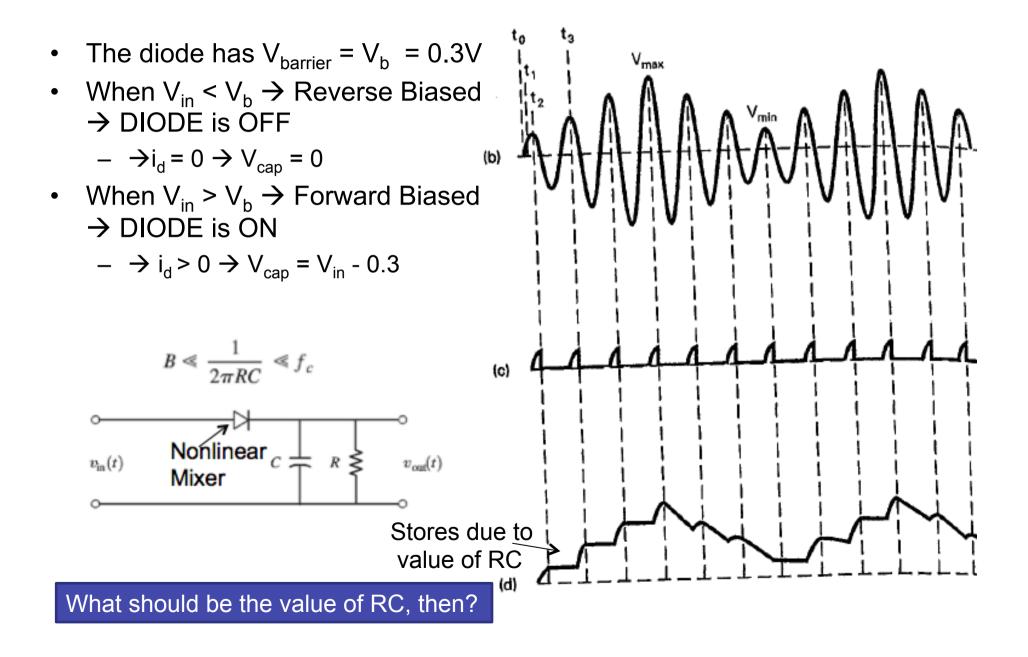


(a) A Diode Envelope Detector



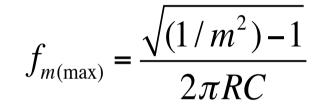
(b) Waveforms Associated with the Diode Envelope Detector

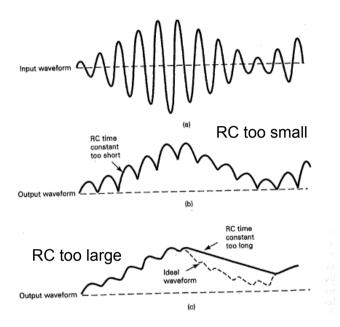
Envelope Detector – Basic Operation



Envelope Detector – Distortion

- What should be the value of RC?
 - If too low then discharges too fast
 - If too high the envelope will be distorted
 - The highest modulating signal:





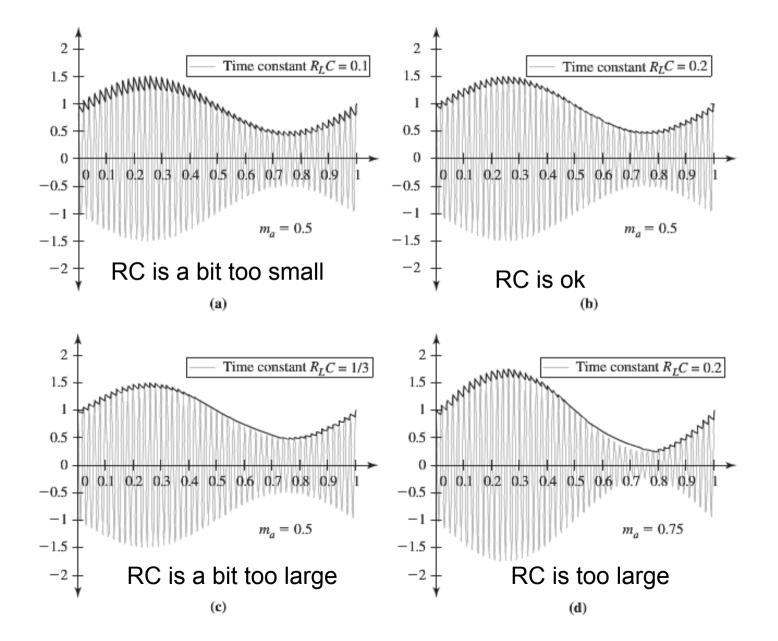
– Note that in most cases m=0.70 or 70 percent of modulation \rightarrow

$$f_{m(\max)} = \frac{1}{2\pi RC}$$

Therefore:

$$B \ll \frac{1}{2\pi RC} \ll f_c$$

Envelope Detection for Different RC



Applets

- Crystal Radio (receiver with no amplifier)
 - http://www.falstad.com/circuit/e-amdetect.html
- Amplitude clipper
 - <u>http://www.falstad.com/circuit/e-diodeclip.html</u>

Single Sideband AM (SSB)

- Is there anyway to reduce the bandwidth in ordinary AM?
- The complex envelop of SSB AM is defined by

$$g(t) = A_c[m(t) \pm j\hat{m}(t)]$$

Thus, we will have •

See Notes Note that $(+) \rightarrow USSB \&$ (-) → LSSB

$$s(t) = A_c[m(t) \cos \omega_c t \mp \hat{m}(t) \sin \omega_c t]$$

We define $(m^{(t)})$ as the **Hilbert Transfer** of m(t): ullet

• Where:
• With impulse response of
• Thus:

$$\begin{aligned}
\hat{m}(t) &\triangleq m(t) * h(t) \\
h(t) &= \frac{1}{\pi t} \\
H(f) &= \begin{cases} -j, & f > 0 \\ j, & f < 0 \end{cases} \\
H(f) = 0, f = 0
\end{aligned}$$
Hilbert Transfer

$$\begin{aligned}
m(t) &= \frac{-90^{\circ} \text{ phase}}{\text{shift across}} \\
\text{freq. of } m(t) \\
\text{freq. of } m(t)
\end{aligned}$$

 \rightarrow

Simple Example on Hilbert Transfer

- What is the H[x(t)] if x(t) is s(t)cos($2\pi f_c t + \phi$):
 - Shifted by -90 degree \rightarrow cos() \rightarrow sin()
 - $\rightarrow H[x(t)] = s(t)sin(2\pi f_c t + \phi)$

Frequency Spectrum of SSB-AM - USSB

For Upper SSB use (+)
$$G(f) = A_c M(f)[1 \pm jH(f)]$$

$$H(f) = \begin{cases} -j, & f > 0 \\ j, & f < 0 \end{cases} \longrightarrow \qquad G(f) = \begin{cases} 2A_c M(f), & f > 0 \\ 0, & f < 0 \end{cases}$$

$$s(t) = A_c[m(t) \cos \omega_c t \mp \hat{m}(t) \sin \omega_c t]$$

Therefore:

$$S(f) = \frac{1}{2}[G(f - f_c) + G^*(-f - f_c)]$$

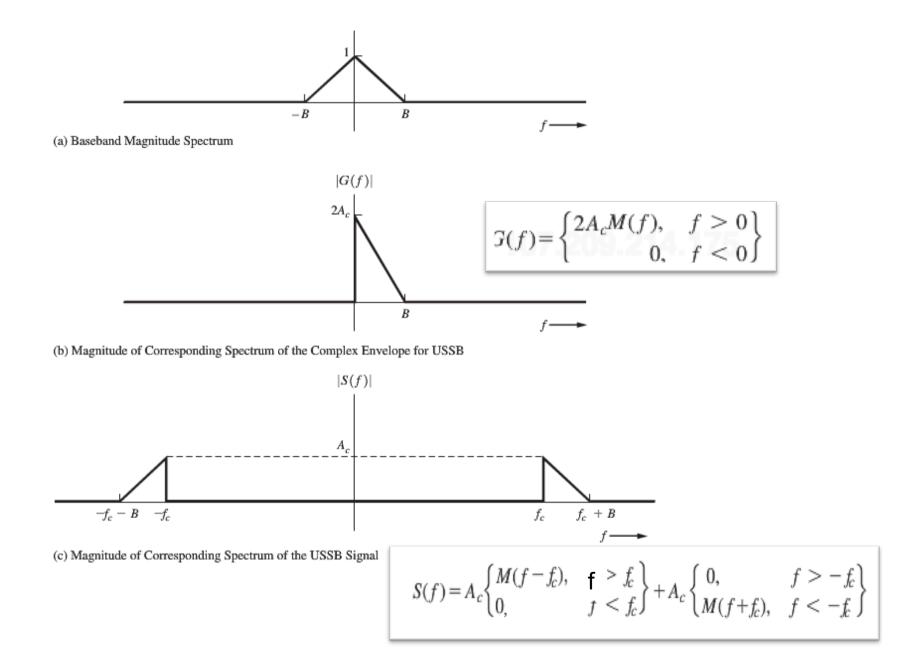
$$\begin{array}{c|c} (\mathbf{f}-\mathbf{fc})>0\\ \mathbf{f}>\mathbf{fc} \end{array} & S(f) = A_c \begin{cases} M(f-f_c), & \mathbf{f} > f_c\\ 0, & f < f_c \end{cases} + A_c \begin{cases} 0, & f > -f_c\\ M(f+f_c), & f < -f_c \end{cases} & \begin{array}{c} (-\mathbf{f}-\mathbf{fc})>0\\ -\mathbf{f}>\mathbf{fc} \end{array} \\ \xrightarrow{} \mathbf{f}<-\mathbf{fc} \end{cases}$$

Normalized Average Power:

$$\langle s^2(t) \rangle = \frac{1}{2} \langle |g(t)|^2 \rangle = \frac{1}{2} A_c^2 \langle m^2(t) + [\hat{m}(t)]^2 \rangle \qquad \langle \hat{m}(t)^2 \rangle = \langle m^2(t) \rangle$$

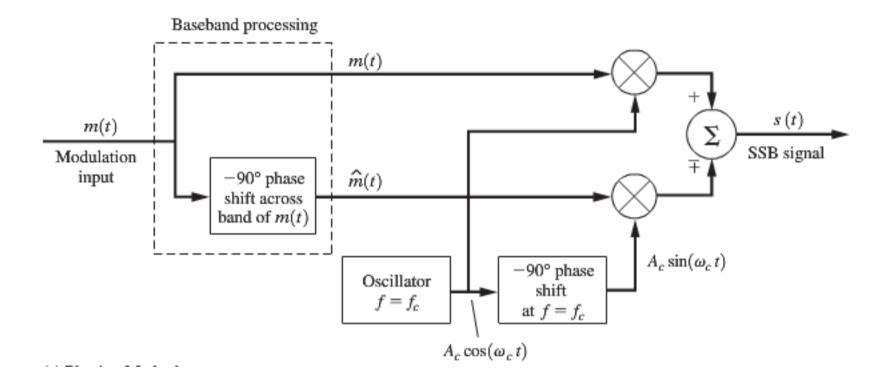
$$\langle s^2(t) \rangle = A_c^2 \langle m^2(t) \rangle$$

Frequency Spectrum of SSB-AM - USSB



Basic Method

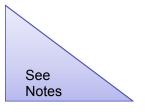
$$s(t) = A_c[m(t) \cos \omega_c t \mp \hat{m}(t) \sin \omega_c t]$$



This is also called Quadrature AM (QAM) modulator with I and Q channels I refers to In phase; Q refers to Quadrature phase)

References

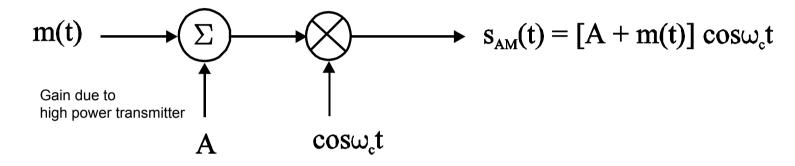
- Leon W. Couch II, Digital and Analog Communication Systems, 8th edition, Pearson / Prentice, Chapter 5
- Electronic Communications System: Fundamentals Through Advanced, Fifth Edition by Wayne Tomasi – Chapter 4 & 5 (https://www.goodreads.com/book/show/209442.Electronic_Communications_System)



Side Notes

Standard (Ordinary) AM

AM signal generation



Waveform : $s_{AM}(t) = A\cos\omega_{c}t + m(t)\cos\omega_{c}t = [A + m(t)]\cos\omega_{c}t$

Spectrum : $S_{AM}(\omega) = (1/2)[M(\omega + \omega_c) + M(\omega - \omega_c)] + \pi A[\delta(\omega + \omega_m) + \delta(\omega - \omega_m)]$

Standard (Ordinary) AM

- The disadvantage of high cost receiver circuit of the DSB-SC system can be solved by use of AM, but at the price of a less <u>efficient transmitter</u>
- An AM system transmits a large power carrier wave, $A\cos\omega_c t$, along with the modulated signal, $m(t)\cos\omega_c t$, so that there is no need to generate a carrier at the receiver.
 - Advantage : simple and low cost receiver
- In a broadcast system, the transmitter is associated with a large number of low cost receivers. The AM system is therefore preferred for this type of application.