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Baseband & Bandpass Waveforms

* A baseband waveform has a spectral magnitude that is nonzero for
freq in the vicinity of the origin (f=0) and negligible elsewhere.

— It is a signal whose range of freq is measured from zero to a maximum
bandwidth

—E.g., an audio signal from a microphone, a TTL signal from a digital circuit.

* A bandpass waveform has a spectral magnitude that is nonzero for
freq in some band concentrated about a freq f = %f..

— The spectral magnitude is negligible elsewhere.

—f. is called carrier freq.

—E.g., An AM radio signal that broadcast news over f.=850 kHz is a
bandpass signal



Why Modulation?

In order to transfer signals we need to transfer the
frequency to higher level

One approach is using modulation

Modulation:
— Changing the amplitude of the carrier

AM modulation is one type of modulation
— Easy, cheap, low-quality
— Used for AM receiver and CBs (citizen bands)

— Generally high carrier frequency is used to modulate the voice signal
(300 — 3000 Hz)



Baseband & Bandpass Waveforms, Modulation
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» Modulation is the process of imparting the source information onto a

bandpass signal with carrier freq f, using amplitude or phase
perturbation (or both).

— The bandpass signal is called modulated signal s(t).

— The baseband signal is called modulating signal m(t).

« Bandpass communication signal is obtained by modulating a

baseband analog or digital signal on a carrier.

—Whereas baseband signal cannot go far, a bandpass signal goes a long

distance.



Complex Envelope Representation

A physical bandpass waveform can be represented by v(¢) = Re {g(t)ejw‘"}

— where g(t) is called the complex envelope of v(t), w=2mf..

g(t) = (1) + jy (1) = (1) | 5 = R(1)e "

— e /"' factor shifts (translates) the spectrum of the baseband g(t) signal from
baseband up to carrier freq £.

— R(1) is said to be amplitude modulation (AM) on v(1).
— 6(t) is said to be phase modulation (PM) on v(t).
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Modulating & Modulated Signals
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Representation of Modulated Signal

* Modulation is the process of encoding the source information m(t)
into a bandpass signal s(t).

 the modulated signal is an application of bandpass representation,
i.e., s(¢) = Re {g(t)e” |

» The complex envelope g(1) is a function of the modulating signal m(t),
l.e., g (t) = g[m(2)]
—E.g., for AM modulation, gfm(t)] = A [1 + m(t)]

g[m(t)] s(t)
m(t) s Em m) L s

.Env. rd

cos(wct)T

Let’s find FT, PSD, and P of v(t)!

v_norm




Spectrum of Bandpass Signal

Theorem: If the bandpass waveform is represented by v(¢) = Re {g(t)ej“""}
then the spectrum of the bandpass waveform is

V(£)=516(f = )+ G (-f = L) & [PSD =B.(1) = J[B,(f = 1+ P,(=f = £.)]

Proof for V(f):

v(t) = Re {g(t)ej”'f’ }: %g(t)ejwf’ - %g‘(t)e_jwf’, &

V()= FIVO) = Flg(@®e™ 1+ Fg" 0™ 1= 1 [G(f ~ £)+G"(-f - £)
where we used the fact that F[g*(¢)]=G*(—f)

s(t) = v(t) Note: Re{a+jb}=(a+jb)/2 + (a-jb)/2 = a




Power Evaluation

* The total average normalized power of bandpass waveform
v(t) is

o &

P, = (v'(0) = / P(f)df = Ry0) = |5 {lg®))

Let’s look at an example!




Example: Spectrum of Amplitude Modulated Signal

Assume the complex envelop g[m(t)] = A [1+m(t)]
Thus, s(t) = A [1+m(t)]Jcos(w_t)

M(f)

glm(t)]

m(t) COFﬁP s{ m(t)
cos(wct)T

s(t)

| .Env.

Find the mathematical expression for S(f) and |S(f)| for all f
using the given M(f):

— Find S(f)

— Find |S(f)|

— Normalized power P.= P,



Example: Spectrum of Amplitude Modulated Signal

AM Modulation

glm(t)] s(t)
Evaluate the magnitude spectrum for | mq) comp | | m(t) M(f)

7| .Env. Cd 9
1.0 \
—B

an AM signal with the complex T
envelope gm(t)]=A.[1+m(t)]. cos(w)

Solution: The spectrum of complex

. -~ J —
envelope is G(f)=A4,0(f)+ AM (f)
(a) Magnitude Spectrum of Modulation
s(t)=Re {g(t)ej " }= A [1+m(t)]cosm,t st D:-f.r,efff::,:ii' -
A ) ) V\‘cflghl = 2.-\. ' ‘/'/ 3¢
S(H :?[(}(f— L)+M(f—f£)+(f +£)+M(f+ f)] e Vo
8¢ sideband sideband
where because m(t) is real, ’
M* ()=M(-f) & &6(f)= &(-f) is even.
—f, =B - e =t B fo— B f. f.+ B

(b) Magnitude Spectrum of AM Signal

A o LA _ * The 1in g(t)= A, [1+m(t)] causes
1S(f)=1 2 Sy MU= SIS >0 extra delta functions to occur in

%5(f+fc)+%'M€_f_fc)|,f<o spectrumatf=+f..



Example: Spectrum of Amplitude Modulated Signal

* Total alverage signal {)ower MPY
P, = 3<1+m(t)|2>= ~ A2 (1+2m(t) + m* (8)) o
1 2 2
-4 1+ 20m() A (m* )] / \
* If we assume that DC value of o . f—
modulation is zero, then <m(t)>=0. (a) Magnitude Spectrum of Modulation
——Average signal Power = P, = %Af [1+P,] ettt 47 e 1,0
—Power in the modulation m(t) =|P, = (m"(t)) 4 i Upper
) sideband sideband
—Carrier Power = %Az / \ ] /\\
=——Power in the sidebands of s(?) = L A’P,
2 ~fe— B = -f.+ B fo— B f. f.+ B
[ ——

(b) Magnitude Spectrum of AM Signal

1) Note that s(7) = Rc{g(t)e’."" }z A [1+m(t)]cosw,t
2) <v(t)*> for periodic sinusoidal functions results in half power
3) m=<m(t)*>>




Amplitude Modulation

Evaluate the magnitude spectrum for
an AM signal with the complex
envelope g/m(t)]=A[1+m(t)].

cos(wa*t);
m(:);
sgrt(-1);
1 + m;
rier
g(:);
rier carrier(:);
real(g.*carrier);

a exp(Jj*wc*t);

a
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Signal

Assume:
m(t) = cos(w,t)
glm(t)]=g(t)=1+m(t)

s(t) = Re{g(t).e®jw_t}
= g(t).cos(w.t)
= [1+m(t)].cos(w_t)




More About AM Modulation

* In AM modulation the carrier signal changes (almost)
linearly according to the modulating signal - m(t)

« AM modulating has different schemes

— Double-sideband Full Carrier (DSB-FC)
 Also called the Ordinary AM Modulation (AM)

— Double-sideband suppressed carrier (DSB-SC)
— Single-sideband (SSB)
— Vestigial Sideband (VSB) — Not covered here!



More About AM Modulation

* In AM modulation the carrier signal changes (almost)
linearly according to the modulating signal - m(t)

« AM modulating has different schemes
Let’s focus on

— Double-sideband Full Carrier (DSB-FC) The s les
 Also called the Ordinary AM Modulation (AM) case!

— Double-sideband suppressed carrier (DSB-SC)
— Single-sideband (SSB)
— Vestigial Sideband (VSB) — Not covered here!

We generally assume the Modulating
Signal is Sinusoidal
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Review: Bandpass Signal

Remember for bandpass waveform we have
s(t) = Re{g(tye

The voltage (or current) spectrum of the bandpass signal is

SU) = 3G f) + G*f —f)]
The PSD will be

Po(f) = 3 [Fe(f —f) + Po(=f —£)]
In case of Ordinary AM (DSB — FC) modulation:

g(t) = A[1 + m(1)]

In this case Ac is the power level of the carrier signal with no
modulation;

Therefore: s(t) = A1 + m(t)] cos wg

Make sure you know where
these come from!




AM: Modulation Index

* Modulation Percentage (m)

% modulation =
2A

o

* Note that m(t) has peak
amplitude of A =
mE_=mA_

* We note that for ordinary
AM modulation,

— if the modulation percentage
> %100, implying m(t) < -1,
— Therefore -

® {Ac[l + m(t)] cos wd, if m(f)=—1
A —_—
0, if m(nH<<—1

max [m(t)] — min [m(f)]

Amax — Amin % 100 = X 100

2
m(t)

" N~ N -

(a) Sinusoidal Modulating Wave

i -

il

(b) Resulting AM Signal




AM: Modulation Index
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AM

: MATLAB Model

* This is how we generate the ordinary AM using MATLAB

fc = 10;

fa = 1;

N = 200;

To = 4;

MI = 1;

Ec = 1;

Ta = 1/fa;

dt = To*Ta/N;
we = 2%*pi*fc;
wa = 2*pi*fa;

t = 0:dt:To*Ta;

m = MI*cos(wa*t);

m = m(:);

P R e

carrier frequency

modulating frequency

number of samples

observation time: To x periods

Modulation Index (0.0-2.0 or 0 to 200 percent)
Ec is the level of the AM envelope in the
absence of modulation, when m(t) = 0;

$ simulation time

$ modulating signal: m(t)

y(i)
end;
end;

-1;

y = zeros(length(t),1); % In this part we force [1+m] = 0 if
for (1 = 1l:1:length(t)) %
if (m(i) > =1)

$ in other words, we ensure [l+m(t)])=0 if
$ m(t) < -1




AM: Normalized Average Power

- Normalized Average Power (s%@) =3 (Ig®F) = 3 AX[1 + m®)P)
 Note that = 3AZ(1 + 2m(t) + m*(0))
(s2D) = 3 A2 + 3 A2(m(D)) = 1A2 + A2m(0)) + IAX (1))

carrier power  (Total)> each sideband will have half the power!
* Pcis the normalized carrier power(1/2)Ac"2

 The rest is the power of each side band (lower sideband or
LSB & USB)

« Thus: A
P w 2 * Ac
LSB ¢

A A
r B (8 A

Py = Pusf Pai= (V2 * Ac*<m(t) A 2>)/2

f':r f fuu

c

NI CRUEIRVEEIG

assuming Load
Resistance, R=1.

Power (W)

Frequency (Hz)



A Practical Example:
Ordinary AM Mathematical Expression

* In this case:
— Vc(t) = Ec sinw._t ; Carrier signal
— Vm(t) = Em sinw_t ; Modulating signal
— Vau(t) =Sau(t) = Ec sinw t + Em sinw_t . sinw_t ; AM modulated signal

E_smw _t

—> > S,u(t)

Gain due to T
high power transmitter

Ec

Modulation
Index!

sinwt

— Vpu(t) = [Ec + Em sinw_t ]. sinw t = [1+ m.sinw,t ]. EC. sinw_t

. Constant + Modulated Carrier
Amp“tUde of the Modulated Signal
modulated Wave

Assume Em = mEc; where 0<m<1 = m is called the modulation index,
or percentage modulation!




AM Modulation and Modulation Index

* Rearranging the relationship:
Vam(f) = E, sin(2x f.t) + [mE, sin(2r f,,1))[sin(27 f.1)]

Van(t) = E, sin(2nf.t) — '"TE“cos[zn(ﬂ + fu)t] + i'%chos[%t(f.: = fult]

* In this case we have:
— | Carrier |+ | LSB | + | USB |

* Note that for m=1 (modulation percentage of 100 percent)
-V = Ec+ mEc=2Ec

am_max
- Vam_min =0;



AM Modulation and Modulation Index

Valt) = E, sin(2nft) — mTE"cos[Zn(fc + f)t] + l%Efcos[h(fc = fult]

SIINNANNNNNN S
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(b):— /\/\/\/ rrrrrr
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AM Power Distribution

P =E?%2R =Vp?4/2R ; R = load resistance
Remember: Pavg Vrms?/R ; where Vrms for sinusoidal is
Vp/sqrt(2)

Vault) = E_ sin(2nf.t) — mTE"cos[M(ﬂ + £ )t] + I?fcos[%(fc = fult]
P

P
P

carrier_average = ECZ/ 2R
= (mEc/2)?/2R = (m?/4)Pc
+ P + P

usb_average

total — I:)carrier_average

usb_average Isb_average

EJ
LS8 ¢ 2R USB
m

. B (8 3
p
Plgp = — 2 P‘.‘st = —

What happens as m
increases?

Paower (W]

Frequency (Hz)



Current Analysis
* Measuring output voltage may not be very practical, that is
measuring Vp in P = Vp?/2R is difficult in across an antenna!

 However, measuring the current passing through an
antenna may be more possible: Total Power is P = IR

Total power ~ P, 1{2 R 13 | m2
- 5 —— -—2 —— -—
Carrier power/Pc- I:R ¢ 2
I, ' m?
h— ‘11 + —
L N 2
I=I,[1+ m*
{ L'\ 2

Note that we can obtain m if we measure currents!




Examples (5A, 5C)



General Case: m(t) can be any bandpass



AM: Modulation Efficiency

Defined as the percentage of the total power of the
modulated signal that conveys information FH

— Signal Power/Total Power s(f) = A“P + ()] cos ¢

. . (, 2 [‘
Defined as: | _ (X ) 100%
1 + {(m~(t))

. /

Note that
<m2(t)> =
m2.P;

P.sis the
normalized
signal power

Normalized Peak Envelop Power is defined as
Prep = (A2 2) " (1 + Ap)?
(when load resistance R=1)

We use P, to express transmitter output power.

In general, Normalized Peak Envelop Power, P, ,can be

expressed as follow: D
P %_I]']LL\ {le(®)



Example (5B)

* Assume Pc_avg = 5000 W for a radio station (un-modulated
carrier signal); If m=1 (100 modulation index) with
modulated frequency of 1KHz sinusoid find the following:

— Peak Voltage across the load (Ac)
— Total normalized power (<s(t)?>)
— Total Average (actual) Power

— Normalized PEP

— Average PEP

— Modulation Efficiency — Is it good?



AM: Voltage and Current Spectrum Issues

« We know for AM:

s(t) = A1 + m(f)] cos w
« The voltage or Current Spectrum will be

A,
S(f) = o [6(f —fo) + M(f—f) + o(f +f) + M(f + f)]

|M(f)

1.0

/I\

—-B B

(a) Magnitude Spectrum of Modulation

[

Discrete carrier term

ISl crete carfer o
raiohy — L with weight =—A_
Weight = 2,4,, 2
1/ u
. Lower Upper
/\ T L sideband sideband
—feo— B —fe —f.t+ B fe— B f fot+t B

(b) Magnitude Spectrum of AM Signal

Note that BW is 2B —
doubled compared to M(f)
9

1- Large bandwidth
requirement

2- Duplicated Information in
Upper and Lower Sides

3- We are wasting power to
send the discrete carrier
power



Building an Ordinary AM Modulator

Transferring AC power to RF power!

m(t) 4,@—?—> 5,,,(8) = [A +m(t)] coswt

Two general types
— Low power modulators
— High power modulators

Low Power Modulators

A

— Using multipliers and amplifiers

— Issue: Linear amplifiers must be used; however not so efficient when
it comes to high power transfer

High Power Modulators
— Using PWM

vy(t) = Vyco

Oscillator 5

(carrier frequency, f,)

Cosw

S @, 1

.t

Intermediate-power
amplifier (TPA)
(class C amp)

s(1)
AM
output

‘ High-power (1)
m(t) Pulse width lectroni )
| modualtor [ itch |
Audio (PWM) -
input ——




Building an Ordinary AM Modulator

vy(t) = V; cos @, ¢ Power Amplifier (PA)
Oscillator \ Intermediate-power Power amplifier s(1)
(carrier frequency, f.) o amplifier (IPA) o (PA) '
4 ¥oJe (class C amp) (class C amp) AM
output
“DC" supply
voltage for PA
T}_‘;(! )
) High-power wy(t)
m(t) Pulse width electronic B Low-pass
—_— be—— | — . .
Audio modualtor | switch filter m(t) = audio input
o (PWM) e
input ——
A

High voltage from
DC power supply

USING PULSE WIDTH MODULATION
AND POWER AMPLIFIERS (CLASS C)

»(t) = PWM

v3(t)

-

s(t) = AM output




Double Sideband Suppressed Carrier

DSB-SC is useful to ensure the discrete carrier signal is

suppressed: | .
s(f) = Aan(t) cos w,.t

The voltage or current spectrum of DSB-SC will be

x"l .
S(f) = 7‘ [M(f — f) + M(f + f.)]

Therefore no waste of power for discrete carrier
component !

What is the modulation efficiency? - 100 Percent!
— Effic = <m(t) 2>/ <m(t) %>
— percentage of the total power of the modulated signal that conveys information

DSB-SC: Spsasc(t) = m(t) cosw,t e(t) [ Low-pass 5,(t)
’? Filter

cosw,t

—>




DSB-SC — Modulation & Coherent Demodulation

Modulation Demodulation
Modulator
Spsasc(t) = m(t) cosw,t t " Sq(t)
m(t) > Spnsc(t) = m(t) coswt o v ;ﬁ::rpass -
(modulating signal) T (modulated signal)
cosw,t cosw,t
(carrier) M(w)
A m t A
® + E(w)
—
/‘ \ » A
g R o e A s
- 2w, 2w, w
L 2w,
Ty
Spsasc(t) 4 Spepsc(W) 4 S(w)
m(t) cosw,t Lower side band
/ﬁ A2| Upper side band A2
t | [, [N
i 2WC 0 2WC w — Wy Wy

e m




DSB-SC — Coherent Demodulation

Spss-sc(t) = m(t) cosw,t >® e(t)

T

cosw,t

| Low-pass

Filter

S«(t)

—>

Multiplying the signal m(t)cosw_ t by a local carrier wave cosw_t
e(t) = m(t)cos’w_ t = (1/2)[m(t) + m(t)cos2w,t]
E(w) = (12)M(w) + (I/4)[M(w + 2w,) + M(® - 2m,)]

Passing through a low pass filter: S (w) = (1/2)M(w)

The output signal:

so(t) = (1/2)m(t)

The issue is how to keep the same exact fc on modulator & demodulator!
—The coherent demodulator must be synchronized with the modulator both in

frequency and phase!
BUT...what if it is not?




DSB-SC — Coherent Demodulation Issues

So, what if the Local Oscillator frequency is a bit off with the center frequency (Aw)?

Spsa.sc(t) = m(t) cosw,t >® e(t) | Low-pass 5,(t)

T Filter

cosw,t
Multiplying the signal m(t)cosw_t by a local carrier wave cos[(w +Aw)t]
e(t) = m(t)cosw,t . cos[(w tAw)t]

= (1/2)[m(t)] . {cos[w t -(w FtAw)t] + cos[w t Hw FAw)t] }
= (1/2)[m(t)] . {cos(Amwt) + cos 2w tAm)t}
=m(t)/2 . cos(Awt) € The beating factor (being distorted)
The coherent demodulator must be synchronized with the modulator both in
frequency and phase!
Disadvantages:
1. It transmits both sidebands which contain identical information and thus
waste the channel bandwidth resources;
2. It requires a fairly complicated (expensive) circuitry at a remotely located
receiver in order to avoid phase errors.




Demodulation DSB-SC

 One common approach to eliminate phase error impact is
using Squaring Loop:

s(t) = A m(t) cos(w, 1)

<

55(1) = A1 + cos(20,0)]

1,
2 4

device

| Square-law

4> (t) cos(2e, )

Bandpass
filter
B = 2f,

|

Acting as an amplitude limiter

. ~ AcAgmiz)
- ( 2 ;) Low-pass - -
filter Demodulated
A output

Ay cos(w, 1)

Using the loop, we are effectively
extracting the carrier frequency!

Agcos(2m,.1)
5 Frequency
e imniter divider

+2

Note that in this case the initial phase must be known!




Building AM Modulators

* AM Modulating Circuits are categorized as
— Low-level Transmitters
— Medium-level Transmitters
— High-level Transmitters



Other Key Components

« Mixers & Multipliers
* Phase shifter

— RC

— Inverters
* Amplifiers

— Linear

— Nonlinear



AM Modulators: Frequency Multiplier

Frequency multiplier

———————————————————————————— ———

[
' |
9. | v v
Vialt) |_g| Nonlinear vi(t) ».| Bandpass : Vons(1) -
| device filter '
| |
|
Nonlinear amplifier and a v
filter to extract the nth harmonic! Y
Bandpass filter
(a circuit tuned to nf)
Biased in T —
nonlinear region ¥
1
L~
O
Frequency out = nf.
Frequency in = f. § S o

O O




Low-Level AM Modulators

Mainly for low-power applications es2ve RC Filter
Requires less modulating signal Jrerdecoupling
power to achieve high m Vet : Rl
Uses an Emitter Modulator (low L (e T
power) f? | L

— Incapable of providing high-power " LT vm@

The amplifier has two inputs: Vc(t) Garrir B\?
and Vm(1) v

m

The amplifier operates in both "~ Modulating Signal

linear and nonlinear modes —
— HOW? See next slide!



Low-Level AM Modulators — Circuit Operation

If Vm(t) =0 - amplifier will be in linear mode
— > Aout=V_cos(w.t); Vc is voltage gain — collector voltage (unit less)
If Vm(t) >0 = amplifier will be in nonlinear mode
— =2 Aout=[V_+ V cos(w.t)] cos(w.t)
Vm(t) is isolated using T1
— The value of Vm(t) results in Q1 to go into cutoff or saturation modes
C2 is used for coupling
— Removes modulating frequency from AM waveform

Vcc =30Vde Modulated carrier superimposed

J VC onto modulating signal

Collector
Voltage

Collector

<
Re :E voltage
4 (va)
¢

- Vm(t)

) Vodulating signal
(vm)
s

Modulated Carrier
with Modulating

me| Signal removed (due
to C2)




High-Level AM Modulators — Circuit Operation

Used for high-power Veo
transmission /\p Ac ) ? .
Uses an Collector Modulator - \{ \V

(h|gh pgwer) rrodulating signa

— Nonlinear modulator

The amplifier has two inputs:
Vc(t) and Vm(t)

RFC is radio frequency choke 'W‘ _%

— blocks RF ety




High-Level AM Modulators — Circuit Operation

* General operation:
— If Base Voltage > 0.7 - Q1 is ON - Ic != 0 - Saturation
— If Base Voltage < 0.7 - Q1 is OFF = Ic = 0 = Cutoff
— The Transistor changes between Saturation and Cutoff

 When in nonlinear - high harmonics are generated—-> Vout must be bandlimited
— See next slide... Vp = Vee

Single-frequency
wmodulating signal

Unmodulated
carrier
Ry




High-Level AM Modulators — Circuit Operation

« C,and L, tank can be added to act as Bandlimited
— Only fc + fm and fc — fm can be transmitted

Modulating
signal

; ; Antenna

Bandlimitting | _ L,g' ™
RC Circuit |

Unmodulated
carrier




AM Modulators — Using Integrated Devices

« XR-2206 is an integrated circuit function generator
* In this case fc=1/R,C, Hz

* Assuming fm = 4kHz; fc = 100kHz we will have the following:

0.001 puF
11

il ) 4 O Vout
= Audio
signal
vV, generator
¢ DC bias N\
4.7 k2 ke o) -L
10 uF =
‘ I 1 16
= 2 16 R,=1k0)
= 7kQ 47 k2 )
= 4 XR-2206 43 l
et d‘:1 F 5 function " -
| s '
K I C, = 0.001 yuF E 5 generator o =
- f : S e L
—  1pF
R1 & C1 R, = 10 kQ Y 9 we L

searchmeonline
httos://www.voutube.com/watch?v=5p5ZMXkaPW0



Building AM Demodulators

 Coherent Spspsc(t) = m(t) cosw,t @ e(t) [Tow-pass 5,(t)
* Non-Coherent T Filter ”
— Squaring Loop cost

— Envelope Detectors



AM Demodulators: Envelope Detector

It is considered as a non-coherent
demodulator

The diode acts as a nonlinear mixer
Other names

— Diode Detector

— Peak Detector (Positive)

— Envelope Detector
Basic operation: Assume fc = 300

KHz and fm = 2KHz

— Then there will be frequencies 298,
300, 302 KHz

— The detector will detect many different
frequencies (due to nonlinearity)

— AM frequencies + AM harmonics +
SUM of AM frequencies + DIFF of AM
frequencies

— The RC LPF is set to pass only DIFF
frequencies

B < <
omkC e
O /{>Il O
o (1) Nc_>n|inear == p § Do)
Mixer
O Q

(a) A Diode Envelope Detector

Input signal, v, (1)

Output signal, Vou(1)
TN
. ﬂ\ h F\ﬂ\ﬂ\

HITTVUUY

U

(b) Waveforms Associated with the Diode Envelope Detector




Envelope Detector — Basic Operation

t
 The diode has V, i, =V, = 0.3V |

« WhenV,, <V, > Reverse Biased
—> DIODE is OFF

— Dig=0> V=0 (0

« WhenV,, >V, =2 Forward Biased
- DIODE is ON

R T
< 3are 7 ‘°’

oo |
N(? ||near(~ -— R § Vo)
Mixer

o

— — — — ———— —
— — — . —— —

Stores due to
value of RC b

(d)
What should be the value of RC, then?




Envelope Detector — Distortion

* What should be the value of RC?
— Iftoo low then discharges too fast ™™ " ) V
— If too high the envelope will be distorted |
— The highest modulating signal:

J/m*)-1
fm(max) =
21 RC

RC too small

— Note that in most cases m=0.70 or 70 percent of modulation -

1

fm(max) = ZJTRC

Therefore:




Envelope Detection for Different RC
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Applets

« Crystal Radio (receiver with no amplifier)
— http://www.falstad.com/circuit/e-amdetect.html

« Amplitude clipper

— http://www.falstad.com/circuit/e-diodeclip.html




See
Notes

Single Sideband AM (SSB)

|s there anyway to reduce the bandwidth in ordinary AM?
The complex envelop of SSB AM is defined by

g(t) = Afm(t) £ ji;r(tv)]

Thus, we will have

Note that

(+) > USSB &
(-) > LSSB

s(f) = Am(t) cos wt F m(t) sin w1]

We define (m’(t) as the Hilbert Transfer of m(t)):

Where: M) = m(t) +h(t)
With impulse response of h(t) = 1
Thus: mt
-5 = 0}
H =
n={7 173
H(f)=0, f=0

Hilbert Transfer

-90° phase
shift across
freq. of m(t)

G(f) = AAM(f) = jFm®D]) —>  G(f) = AM(HI1 £ jH(f)]

m’(t)



Simple Example on Hilbert Transfer

* What is the H[x(t)] if x(t) is s(t)cos(2nf_t+¢):
— Shifted by -90 degree —>cos()-> sin()
— =2 H[x(t)] = s(t)sin(2xf_t+¢)



Frequency Spectrum of SSB-AM - USSB

For Upper SSB use (+) G(f) = AM(HIT = jH(f)]

- f=i =0 ~ [2AM(f), f=>0

s(t) = AJ[m(t) cos wt F m(t) sin wt]

Therefore: S(f) = 3[G(f—f) + G*—f —f)]

(f-fc)>0 — M(f—f), f=F 0, f=—k (%EICPO
f>fc S(fY=A, A e e -1=lie
0, f <k M(f+f), f<—f Sf<fc
Normalized Average Power:
(%)) = 3(g@P) = 342w’ @) + [m)?) (1)) = (m*(1))

(s5(0)) = AZ(m*(t))



Frequency Spectrum of SSB-AM - USSB

/ \
~B B
f—>
(a) Baseband Magnitude Spectrum
|G(f)
24

2AM(f).

e
J(f)= { |
\ OA f .:'- 0
B
f i

(b) Magnitude of Corresponding Spectrum of the Complex Envelope for USSB

S(f)

Ar.'

.- B & e fotB
f >

- M(F-f), f>f } { 0,
S =A. : +A.
) ‘{0 1< 1) erp,

f>-f
f<-f

}



Basic Method

s(t) = AJ[m(t) cos wt F m(t) sin w,t]

Baseband processing

—————————— — —— —

| A sin(w,. 1)

: | m(f)
|
' :
l |
|
m(t) | |
I |
Modulation : |
mput 1| [ o0 phase | | gy
: —| shift across =+
' band of m(t) | |
|
\ _J'
Oscillator —90° phase
- = shift
f=r \ at f=f

A.cos(w, 1)

This is also called Quadrature AM (QAM) modulator

with | and Q channels

| refers to In phase; Q refers to Quadrature phase)

s (1)

SSB signal

=



References

 Leon W. Couch Il, Digital and Analog Communication
Systems, 8 edition, Pearson / Prentice, Chapter 5

« Electronic Communications System: Fundamentals Through
Advanced, Fifth Edition by Wayne Tomasi — Chapter 4 & 5

(https://www.goodreads.com/book/show/209442.Electronic_Communications_System)

See
Notes







Standard (Ordinary) AM

AM signal generation

m(t) —» » S,(t) =[A +m(t)] cosw,t

Gain due to T
high power transmitter

A cosw,t

Wavetform :
sam(t) = Acosw t + m(t)cosw t = [A + m(t)]cosw t

Spectrum :
S \my(®) = (172)[M(w + »,) + M(w - ®.)] + TA[d(w + ® ) +
6((D - mm)]



Standard (Ordinary) AM

» The disadvantage of high cost receiver circuit of the DSB-SC
system can be solved by use of AM, but at the price of a less
efficient transmitter

* An AM system transmits a large power carrier wave, Acosw_t,
along with the modulated signal, m(t)cosw_t, so that there is no
need to generate a carrier at the receiver.

— Advantage : simple and low cost receiver

* [In a broadcast system, the transmitter is associated with a large
number of low cost receivers. The AM system is therefore
preferred for this type of application.



